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SHORT COMMUNICATIONS 

Synthesis of Analogs of Fumonisin B1 
The fungus Fusarium moniliforme Sheldon is one of 

the most important ear rot pathogens of corn (Nyvall, 
1983). The toxicity of the mold was initially discovered 
when an isolate of F. moniliforme from corn grown in an 
area of Africa with a high incidence of esophageal cancer 
was tested (Marasas et al., 1981). This isolate induced 
quine leukoencephalmalacia in horses (Kriek et al., 1981), 
was hepatocarcinogenic to rats (Jaskiewicz et al., 1987), 
and was mutagenic to Salmoneklla typhimurium (Gelder- 
blom et al., 1986). Fumonisins are considered tumor 
promoters because their culture material induces y-glut- 
amyltransaminase positive foci in rat liver, which is a well- 
established bioassay for tumor promoters (Norred et al., 
1992). Fumonisins are also known to be inhibitors of 
sphingosine biosynthesis (Wanget al., 1991). The isolation 
and structural elucidation of the fumonisins have been 
published (Bezvidenhout et al., 1988; Plattner, 1992). 

The stereochemistry of the fumonisins is unknown; 
therefore, the synthesis of analogs became our initial goal. 
Analogs of fumonisin which exhibit fumonisin activity will 
enable toxicologists to study the dependence of activity 
on structure. Determination of the minimum structural 
requirements for activity may enable researchers to 
prepare inhibitors of fumonisins. Our hypothesis was that 
the tricarballylic side chains and the amine constituted 
the minimum functional requisites for activity. Our 
synthetic objectives therefore became analogs 1-3. No 
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synthetic method for the introduction of the tricarballylic 
side chain had been published. Our approach to 1 began 
with oleylamine (4). Oleylamine was reacted with benzyl 
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chloroformate and sodium carbonate (Bergmann and 
Zervas, 1932) to yield carbamate 5 in 75% yield. After a 
number of unsuccessful attempts to introduce the side 
chains, the Prevost reaction was examined (Wilson, 1957). 
The Prevost reaction (Scheme I) involves the oxidation of 
alkenes with iodine and silver carboxylates. Under 
anhydrous Prevost conditions, the reaction with cyclo- 
hexene yields the trans-diacyl derivative. However, the 
cis-diacyl derivative can be obtained when the reaction is 
conducted in the presence of water. The silver salt 6 (Brice 
and Simons, 1951) was quantitatively generated by reacting 
tricarballylic anhydride 7 (Emergy, 1891) with silver oxide 
in the absence of light. The reaction of trans-2-butene 
and 6 under the Prevost conditions yielded 80% of the 
anhydride 8. Carbamate 5 was then reacted with 2 equiv 
of 6 in the presence of 1 equiv of iodine in boiling benzene 
for 2 days to produce the bis(anhydride) 9 in 90% yield. 
Hydrolysis of anhydride 9 with 101 THF/water and a 
catalytic amount of CF3COzH at 25 OC afforded the 
tetraacid 10 in quantitative yield. The removal of the 
N-benzyloxycarbonyl protecting group was not straight- 
forward. Although hydrogenation with palladium on 
carbon (Pd/C) in ethanovwater and the use of a hydrogen- 
transfer reagent such as cyclohexene failed, the hydro- 
genation of 10 with Pt02, Pd/C, trifluoroacetic acid, and 
acetic acid (Hays et al., 1991) afforded a 90% yield of 
analog 1. Purificationof 1 was effedd by high-performance 
liquid chromatography (HPLC) on a CIS column. 

The synthesis of analogs 2 and 3 began with ketone 11 
(Tsuji and Hashiguchi, 1981). Reaction of the enolate of 
11 (formed by the reaction of 11 with 1.2 equiv of LDA in 
THF) with aldehydes 12 and 13 (Scheme 11) (Stammer 
and Khatri, 1979) at -78 "C afforded the &hydroxy 
ketones 14a and 14b in 54 and 46% yields, respectively. 
Unfortunately, the aldol condensation with 12 showed 
low diastereoselectivity. The reaction of 14a,b with 
Me4NBH(OAc)3 (Evans and Chapman, 1986) in acetoni- 
trile/acetic acid at 0 "C for 2 days produced diols 1Sa and 
1Sb in 70 and 63% yields, respectively. The final steps 
of the synthesis of analogs 2 and 3 are the same as those 
for analog 1. The diols 15a,b were heated with the silver 
salt 6 in benzene providing 70% of 16a and 64% of 16b. 
Hydrolysis of 16a,b with THF/water/trifluoroacetic acid 
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followed by hydrogenation with PtOa, Pd/C, trifluoroacetic 
acid, and acetic acid yielded analogs 2 and 3. Purification 
of 2 and 3 was effected by HPLC. To determine more 
about the structural requirements for fumonisin activity, 
anhydride 8 was hydrolyzed to produce tetraacid 17. 

Toxicity studies using in vitro assay8 was used to evaluate 
the comparative toxicity of analogs 1-3 and 17 to FBI. In 
this aasay all analogs and FBI were dissolved in dimethyl 
sulfoxide (DMSO) and incorporated into the cell culture 
media. The level of DMSO in any one culture did not 
exceed 1% of the total volume of media. Cells from a 
continuous cell line derived from rhesus monkey kidney 
cells (MA104) were grown to confluency in 96-well tissue 
culture plates. The growth medium [lo% Serum Plus 
(JRH Biosciences, Lenexa, KS) in Dulbecco's modified 
Eagle's medium (DMEM) (Gibco Labs, Grand Island, 
NY)] was removed and replaced with maintenance me- 
dium (2 % Serum Plus in DMEM) containii various levels 
of FBI or fumonisin analogs. Following 48 h of incubation 
at 37 O C  and 5% C02 atmospheric conditions, the cultures 
were evaluated for cell viability. The number of viable 
cells was determined by the addition of the tetrazolium 
dye MTT. Analogs 2 and 3 were more toxic than FBI, and 
analog 1 was comparasle in toxicity to FBI. Analog 17, 
which contains only the tricarballylic side chain unit, was 
not toxic, even at levels of 250 ppm. 
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